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where T, ,— T, , is the overall temperature difference and the summation includes

all thermal resistances. Hence
B Toc‘[ - Tx.‘i
9= [((1/hA) + (Ly/kpA) + (LglkgA) + (Lc/kcA) + (1/h,A)]

Alternatively, the heat transfer rate can be related to the temperature difference and
resistance associated with each element. For example,

Tm,l_Ts,l_};—.i_T:'e Tg—Tg_

Y N N R

thermal potential difference
Heat flow = e

thermal resistance
*Overall heat transfer coefficient

With composite systems it is often convenient to work with an overall heat transfer
coefficient, U, which is defined by an expression analogous to Newton’s law of
cooling. Accordingly,

g,= UAAT

Or
qx = UA(TDOI - T004)
That means:

UA = UR,.

1 1

= Ry A [(U/h) + (Lilky) + Lglky + Lk + (UhD]

b. Material in parallel:

T T,
qx = q1 + q>
T,—T- !
ql 1Ax 2 q
k141 —>
2
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T,1—T;
qz 1Ax 2
koA
= (T = Ty) [
1 1 1

Re Ry Ry

Where:

k1A1 l [ k2A2

R, : Equavelant resistance.
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Example 2.1: Find the heat transfer per unit area through the composite wall in
Figure below. Assume one-dimensional heat flow.

-‘-';1= 0
kr=5
k=170
Ag= Ap
Solution:
_ar
=5
A
R==
kA
0.025

4~ Ts0)00

0.075

B = (30)(0.05)

005
C ™ (50)(0.1)
_ 0075
D ™ (70)(0.05)
R=R,+R;
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AT _ 370-66

9= % = 2667102 11400 W

H.W CH2:1,2,3,4
H.W PLANE WALL CH2

2-1 A wall 2 cm thick is to be constructed from material that has an average thermal conductivity of 1.3
W/m+ -C. The wall is to be insulated with material having an average thermal conductivity of
0.35W/m = -C, so that the heat loss per square meter will not exceed 1830W. Assuming that the inner
and outer surface temperatures of the insulated wall are 1300 and 30-C, calculate the thickness of
insulation required.

2-2 A certain material 2.5 cm thick, with a cross-sectional area of 0.1 mz2, has one side maintained at 35
-C and the other at 95-C. The temperature at the center plane of the material is 62-C, and the heat flow
through the material is 1 kW. Obtain an expression for the thermal conductivity of the material as a
function of temperature.

2-3 A composite wall is formed of a 2.5-cm copper plate, a 3.2-mm layer of asbestos, and a 5-cm layer
of fiberglass. The wall is subjected to an overall temperature difference of 560-C. Calculate the heat
flow per unit area through the composite structure.

2-5 One side of a copper block 5 cm thick is maintained at 250-C. The other side is covered with a
layer of fiberglass 2.5 cm thick. The outside of the fiberglass is maintained at 35-C, and the total heat
flow through the copper-fiberglass combination is 52 kW. What is the area of the slab?

2-6 An outside wall for a building consists of a 10-cm layer of common brick and a 2.5-cm layer of
fiberglass [k =0.05 W/m - -C]. Calculate the heat flow through the wall for a 25-C temperature
differential.

2-7 One side of a copper block 4 cm thick is maintained at 175-C. The other side is covered with a
layer of fiberglass 1.5 cm thick. The outside of the fiberglass is maintained at 80-C, and the total heat
flow through the composite slab is 300 W. What is the area of the slab?

2-8 A plane wall is constructed of a material having a thermal conductivity that varies as the square of
the temperature according to the relation k& =ko(1+pT 2). Derive an expression for the heat transfer in
such a wall.

2.2.2 Radial system

a. Cylindrical

Consider a long cylinder of inside radius 7;, outside radius ro, and length L, such as
the one shown in Figure 2-3. We expose this cylinder to a temperature differential
T; — T, and ask what the heat flow will be. For a cylinder with length very large
compared to diameter, it may be assumed that the heat flows only in a radial direction,
so that the only space coordinate needed to specify the system is r.

The general conduction equation in cylindrical coordinate:

1a oT 1 ¢ aT
AR T y

o (. al\, .. . aT
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Assumptions:

>

*,

» steady state.
» One dimension with radius only.
% No heat generation.

L)

o

>

Equation 2.6 will reduced to:

10 oT
—ar (kr 6_1') =0 2.7
We may determine the temperature distribution in the cylinder by solving Equation
2.7 and applying appropriate boundary conditions. Assuming the value of k to be
constant, Equation 2.7 may be integrated twice to obtain the general solution

oT

r—=2=_C
or 1

Hot fluid
Iy iy

Cold fluid

T, i Inlrsiry) 1

M2l 2mil h2mr,l

FIGURE 2-3: Hollow cylinder with convective surface conditions.

T{fa’ — Cl Inr+ Gz

To obtain the constants of integration C; and C,, we introduce the following boundary

conditions:
NMr)=T,, and ) = T.p
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Applying these conditions to the general solution, we then obtain
I,=Clnn+ G and T,=Cilnnp+ G

Solving for C; and C;

— Ts,l_Ts,Z
1~ T
In( 1/1'2)

T51—Ts2.

in (rl/ )

and substituting into the general solution, we then obtain

La-T, (
0~ o () T

C, =Tsp — * In(ry)

2.8
The rate at which energy is conducted across any cylindrical surface in the solid may

be expressed as

gr = —kAZ = —k(2nrL) 2 2.9
2wlk(T,; — T,
A P (fzfrl}. 210

From this result it is evident that, for radial conduction in a cylindrical wall, the
thermal resistance is of the form

P In (ry/ry)
tcond — Z'JT—LH' K/W, °C/W 2.11
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2.2.3 Composite Cylinder Wall

T
1 In{r/ry) In{rsfrs)  Inlry/rs) 1

h2xr L 2n kL 2r il 2kl h2mr,l

FIGURE 2-4: Temperature distribution for a composite cylindrical wall.

Consider now the composite system of Figure 2.4. Recalling how we treated the
composite plane wall and neglecting the interfacial contact resistances, the heat
transfer rate may be expressed as

. T._c_] =R TI.=1
9= In (ry/r;) 4 In (rs/r) 4 In (ry/rs) - i )12
21T-‘"1L.hl ZTTKA.I': ZTTkBL ZTTK{:'L - .271‘":11[:1‘]':1

ok o™T \J VUL GUIL AAVAIL 11 AAILIJIVEI LU VUNVILILIVIVILL

The foregoing result may also be expressed in terms of an overall heat transfer
coefficient. That is,

Ty — Ty

E?r Em[ DH{T?».E = Tm.-ij 2.13

If U is defined in terms of the inside area, A; = 2mr4L, Equations 2.12 and 2.13
may be equated to yield
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U, = 1
l 5. : : ‘_+ ry ! ry N r I ry ¥ n i 2.14
hy kyn 0 kg T2 kg 3 11 hy

This definition is arbitrary, and the overall coefficient may also be defined in
terms of A, or any of the intermediate areas. Note that

UiA; = DAy = UsAs = UAv= ER)™ 2.15

Example 2.2:

Water flows at 50°C inside a 2.5-cm-inside-diameter tube such that 4; = 3500
W/m? - °C. The tube has a wall thickness of 0.8 mm with a thermal conductivity
of 16 W/m - °C. The outside of the tube loses heat by free convection with 4, =
7.6 W/m” - °C. Calculate the overall heat-transfer coefficient and heat loss per unit
length to surrounding air at 20-C.

Solution

There are three resistances in series for this problem, with L = 1.0 m, d;= 0.025 m,
and d, = 0.025 + (2)(0.0008) = 0.0266 m, the resistances may be calculated as:

1 1

1= Snrih,  (3500)7m(0.025)(1) 0.00364 “C/W.

0.0266

R =) G0 00062 few
teond = ankl T 2m(16)(1) ' :

1 1

2mryLhy - (7.6)m(0.0266)(1) = 1.575 "C/W.

R2=

qr = UlAl(Too,l - Too,Z) = UZAZ(Too,l - Too,Z)

1 1
U1 = =
A1Rtotal (rd1L)R¢otal
1
U, = — 8.064
1(0.025)(1)(0.00364+0.00062+1.575)
1 1
U2 = =
AzRtotal (mdyL)R¢total
1
L = = 7.577

7(0.0266)(1)(0.00364+0.00062+1.575)
q, = 8.064(m)(0.025)(1)(50 — 20) =19 W
q, = 7.577(1)(0.0266)(1)(50 — 20) =19 W
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Example 2.3:

A thick-walled tube of stainless steel [18% Cr, 8% Ni, k=19 W/m - °C] with 2-cm inner diam-
eter (ID) and 4-cm outer diameter (OD) 1s coverad with a 3-cm layer of asbestos insulation
[k=0.2 W/m . “C]. If the inside wall temperature of the pipe 1s mamtamned at 600°C, calculate
the heat loss per meter of length. Also calculate the tube—insulation interface temperature.

q 2w (11 = Th) 27 (600 — 100)
e = =——— =680 W/m
L In(ra/r)/ks+1n(r3/r2)/ka  (In2)/19+ (In 3)/0.2

This heat flow may be used to calculate the interface temperature between the outside tube wall

and the insulation. We have
q In—1
—_—= = (80 W,
L = n(rs/r0)/2nka i

The heat flow is given by

Ashestos
s T, =100°C
o—AA—O—ANV—DO
In (ry/7y) In (73/m)
kL 2k L

where T}; 15 the inferface temperature. which may be obtained as
T;=595.8°C

The largest thermal resistance clearly results from the msulation. and thus the major portion of the
temperature drop 1s through that material.

H.W conduction in cylinder

2-31 AS-cm-diameter steel pipe is covered with a 1-cm layer of insulating material having & = 0.22
W/m.”C followed by a 3-cm-thick layer of another insulating material having £ = 0.06 W/m.”C. The
entire assembly is exposed to a convection surrounding condition of # = 60 W/m>.°C and T., =15°C.
The outside surface temperature of the steel pipe is 400°C. Calculate the heat lost by the pipe-insulation

assembly for a pipe length of 20 m. Express in Watts.
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2-56 Water flows on the inside of a steel pipe with an ID of 2.5 cm. The wall thickness is 2 mm, and
the convection coefficient on the inside is 500 W/m?.°C. The convection coefficient on the outside is 12

W/m2.°C. Calculate the overall heat-transfer coefficient.

2.2.5 Critical Thickness of Insulation

Let us consider a layer of insulation which might be installed around a circular
pipe, as shown in Figure 2-5. The inner temperature of the insulation is fixed at 7;,
and the outer surface is exposed to a convection environment at Too. From the
thermal network the heat transfer is

Figure 2-5 Critical insulation thickness.

//N
8 z 2
\\\ ,// o 2 (? # O V\.lf‘-,-—ﬁ

2wkl 2rr Lh
_ nL(Ti —Ty)
=T (ro/ri) 1 2.16
k roh

Now let us manipulate this expression to determine the outer radius of insulation
ro, which will maximize the heat transfer. The maximization condition is

1 1
ST~ i) (— ——)

dg 6 kro  hrl
drﬁ ].‘Il {f];f.",‘] 1 2
5 ¥
k roh
which gives the result
k 2.17

h

.l"(, —

Equation (2.17) expresses the critical-radius-of-insulation concept. If the outer
radius is less than the value given by this equation, then the heat transfer will be
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increased by adding more insulation. For outer radii greater than the critical value
an increase in insulation thickness will cause a decrease in heat transfer.

Example 2.4:

Calculate the critical radius of insulation for asbestos [k = 0.17 W/m - °C]
surrounding a pipe and exposed to room air at 20°C with 4 = 3.0 W/m® - <C.
Calculate the heat loss from a 200-C, 5.0-cm-diameter pipe when covered with the
critical radius of insulation and without insulation.

Solution:
From Equation (2-17) we calculate 7, as

k 017
fao=—=——=0.0567Tm=>5.67 cm
h 3.0

The inside radius of the insulation is 5.0/2 = 2.5 c¢cm, so the heat transfer is
calculated from Equation (2.16) as

q 2m (200 — 20) 1057 W
L In(5.67/2.5) . 1 = s
0.17 (0.0567)(3.0)

Without insulation the convection from the outer surface of the pipe is

% = h(2mr)(T; — T,) = (3.0)(2m)(0.025) (200 — 20) = 84.8 W/m

So, the addition of 3.17 cm (5.67 — 2.5) of insulation actually increases the heat
transfer by 25 percent. As an alternative, fiberglass having a thermal conductivity
of 0.04 W/m - -C might be employed as the insulation material. Then, the critical
radius would be

k 04
fo=—=——=00133m=1.33 cm
h 3.0

Now, the value of the critical radius is less than the outside radius of the pipe (2.5
cm), so addition of any fiberglass insulation would cause a decrease in the heat
transfer.

b. Spherical

Figure 2.6 show a hollow sphere of radius R1 at Ts,1 and R2 at Ts,2. For sphere
the heat equation is gives by equation 1.9¢
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